If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-9y-32=0
a = 2; b = -9; c = -32;
Δ = b2-4ac
Δ = -92-4·2·(-32)
Δ = 337
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{337}}{2*2}=\frac{9-\sqrt{337}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{337}}{2*2}=\frac{9+\sqrt{337}}{4} $
| -7x-29=-5(4x-2) | | x+-7=35 | | -7+22+b=55 | | c(2)(3.14)=14.82 | | 1.7q-1.4-1.6q=-0.9q-3.6 | | 5x+2+82=90 | | 42=1/20h(5+9) | | s/4+7=5 | | 2-4x=1x-9 | | 9x+2=8 | | -17+2+b=55 | | 2(2t+4)=3/4(24+8) | | 6u-48=0 | | 24x-90=6x | | x+12.6=-6.2 | | 6=1-2=-9+7x | | 19x-70=5x | | 4x-4+15x-25=180 | | )4x2−12x+9=0 | | n/58=11/5 | | 3x-2+2x+22=90 | | 3(4x+6)=8x–10. | | 0.3x+1.7=0.9x-0.7 | | x=24+7x | | (x-10)+80=(2x-5) | | 4(y-7)=-16 | | (2x-10)-(x-15)=8 | | 2x+50=50-4x | | 9=5(y+3)-7y | | (x-10)+80=(2x+5) | | 5y-2/12=6y-5/17 | | 1/3+117=b |